

Next Generation Decarbonized Data Center System Design

Future Data Summit

Danfoss Climate Solutions

The Excess Heat Opportunity

"72% of the global energy input (consumed primary energy carriers) is currently lost after conversion.

The future energy system will look radically different and use a lot less primary energy.

Such a system will be characterised by:

- a) "electricity-only" renewables (mainly solar and wind),b) electrification of many end uses that currently rely on burning fossil fuels,
- c) reusing unavoidable waste heat,
- d) much improved end-use efficiency
- e) enhanced flexibility"

Estimating the global waste heat potential - ScienceDirect

Why is the market focused on Heating Electrification Efficiency & Decarbonization

NOx

Inefficient

Fossil fuels

Drive CO₂ & other gas emissions impacting

~45% efficient Transmission & Distribution

Heat pumps

~35% operating cost reduction ~60% emissions reduction

- More efficient
- Efficiency increases at part-load/lift
- Goal is to exceed spark spread

COP~2.5-3.5

Heat Pump Part Load Efficiency

Classified as Business

Spark Spread –

EUR 1st Half 2023

Electrification COP > spark spread = payback

Ratio driven by both electricity and gas cost

Wide variation by country

 \bigcirc

Variation also in real-time vs average

(3) European Heat Pump Association: Overview | LinkedIn

Electricity to gas price ratio

<1.5 1.5-2.5 2.5-3.5 >3.5

Sector coupling is the process of optimizing the combination of at least two different sectors of energy demand and production

- Can happen on a small scale through urban planning, or it can happen on a larger scale through district energy networks.
- Large synergies can occur when a producer of excess heat, for instance a data center, is located close to entities that can buy and use large amounts of the excess heat (e.g. horticulture).
- Smart urban planning should consider these synergies between energy producers and users in, for example, industrial clusters.
 Smart urban planning and sector integration play a vital role in decarbonizing our energy system.

Sector Coupling

Holistic Approach to Efficiency and Decarbonization via Integrated Systems

Sector integration

Danfoss Climate Solutions | Sector Integration

Source, Heat Pump and Demand Analysis Heat Sources - Projects

Opportunities by Heat Source (# of projects)

Source, Heat Pump and Demand Analysis Heat Sources - Quality Grouping

Source Temperature Average/Range

Source, Heat Pump and Demand Analysis System Design Example – Subway Recovered to District Energy

Sector Coupling Efficiency & Electrical Load are Critical

Source, Heat Pump and Demand Analysis

Variations

Sector Coupling Retrofit Options Baseline - Data Center Cooling / Heat Recovery

Retrofit Data Center with Water-Water Heat Pumps

Danfoss data center cooling & heat recovery system digital twin

Sector Integration Retrofit Options

Lower Heat Demand Return Temps Enable Higher Heat Pump Efficiency

- Lower return temp from variable flow, 2way PICV and AI control software optimization
- In-turn allows series-series counterflow heat pump - 20% efficiency increase

5.8 COP Heating

4.8 COP Cooling

Danfoss Climate Solutions | Sector Integration

Classified as Business

Sector Coupling Retrofit Options Liquid Cooling / Higher Source Temps Allows Max Efficiency

Danfoss Climate Solutions | Sector Integration

Classified as Business

ENGINEERING TOMORROW

Sector Coupling Retrofit Options Data Center Free Cooling / Heat Reuse – Business Model

Source, Heat Pump and Demand Analysis Source Variation – Data Center

- > Data Center direct-on-chip liquid cooling
- > Recovered heat to custom hydronic station
- > Custom Station data center cooling system isolation
- > Supplied to evaporator loop of water-water heat pump

- Centrifugal series-series counterflow heat pump
- > Boosting recovered heat directed from custom station
- > Boosted to loop for heat accumulator tank

- Heat accumulator tank to store heat at temperature supplied by heat pump
- > Storage to district energy per demand / loading
- > Supplied to existing district heating network

Sector Coupling Retrofits Heat Recovery Stations – What is It?

Sector Coupling Retrofits Heat Recovery Stations – Large Scale

Sector Integration Retrofit Options Data Center Free Cooling / Food Production Heat Reuse

Classified as Business

Source, Heat Pump and Demand Analysis Source Variation - Greenhouse

- > Data Center direct-on-chip liquid cooling
- Supplied direct to custom station with no heat pump boost True symbiosis system
- > Data center cooling backup air-cooled chillers or dry cooler heat rejection (when not recovered)
- Recovered heat to custom hydronic station
- Custom Station data center cooling system isolation

- > Recovered heat supplied to air-handler for heating of outdoor air
- > Heated outdoor air supplied to greenhouse to maintain year -around optimal growing temperature

Source, Heat Pump and Demand Analysis Heat Pump and Demand Variation – Brewery

57K Differential = 4.7 COP

- Data Center direct-on-chip liquid cooling
- > Recovered heat to custom hydronic station
- > Custom Station data center cooling system isolation
- Supplied to evaporator loop of water-water heat pump

- Piston-based water-water heat pump
- Boosting recovered heat directed from hydronic station
- > Boosted to loop for heat accumulator tank

- Heat accumulator tank to store heat at temperature supplied by heat pump
- Storage to brewery fermentation and pasteurization per demand

Additional Heat Recovery Opportunity

Data Center Backup Power & Hydrogen Production

Water-Water Heat Pump	Cooling capacity	Heating capacity	Power input	COP Cooling	COP Heating	Chilled water leaving Temp	Chilled water enteri Temp	Hot water return Temp	Hot water supply Temp	Minimum Ioad
	kW	kW	kW	w/w	W/W	°C	°C	°C	°C	
Full load, 28- 20C	650	824	174	3.74	4.74	33	28	60	70	18.8%

2MW PEM electrolyzer

70% electrolysis efficiency / 30% waste heat recovered

Electrolysis degrades / recovered waste heat increases over time

Recovered waste heat increases further when paired with hydrogen fuel cell for onsite power

Why Water-Water Heat Pump & High Heat Recovery Temperature are Critical

Multiple heat source choices

- Large air-water heat pump ~3-3.5 COP
- Oil-free water-water recovery heat pumps ~6-7 COP, based mainly on higher source temperature
- High electricity price fluctuation

From efficiency & resulting operating cost / heat price

- Air-water heat pumps operate when electricity price
 < 600 DKK/MWh (~300 hours this year)
- Oil-free heat pumps operate when electricity price < 1200 DKK/MWh (>80% of the year)

Daily electricity price fluctuation – One day (10/21)

For DHU, difference between low-cost baseload heat source with quick payback and peaking plant backup

Conclusions

- Energy system excess heat presents a significant opportunity for efficiency and decarbonization
- Baselining energy transition discussions to current and alternative solutions critical to showing the best path
- The magnitude of efficiency exceeding spark spread ratio governs financial return
- Sector coupling, or tying energy systems together increases efficiency, resiliency, payback and decarbonization
- We can learn a lot and simplify a complicated system by segmenting it and understanding alternative applications
- Increasing data center cooling temperature with new cooling technologies significantly increases the return also for heat reuse
- Hydronic separation of data center cooling from heat recovery system eliminates much of the separate business model complications
- "Heat reuse-ready" data center system design enables ambient-independent free cooling and removes barriers to building new data centers
- Data centers are an optimal source for electrification of not only district energy systems, but any application electrifying their heat source
- The resiliency of the data center and critical facility system from their backup power enables reuse resiliency
- Critical facility cooling systems, including data centers are the future baseload source for a decarbonized and resilient electrified energy system

ENGINEERING TOMORROW